"After a patient with diabetes develops an open wound, closure of the foot wound is hampered by both physiologic impairments and an increased susceptibility to wound infection"

WE'RE CHANGING THE DYNAMICS OF WOUND HEALING

Diabetic Foot Ulcer

Richard A. Schilling, D.P.M., Scott R. Littrell, D.P.M.

Day 0

Open wound

Day 43

Continued progressive healing (79% reduction)

Day 71

Complete wound closure

IN AN EVALUATION OF 12 DFU'S

MEDIAN WOUND CLOSURE

WITHIN 4 WEEKS

MEDIAN NUMBER OF WEEKS

TO WOUND CLOSURE

MEDIAN APPLICATIONS

TO WOUND CLOSURE

MEDIAN

WE'RE CHANGING THE DYNAMICS OF WOUND HEALING

	All Cases	Pressure Ulcer	DFU	Chronic Vascular	Surgical Wound	Trauma Wound	Complex	Complex Acute
Patients	34	4	11	12	1	3	2	1
Wounds	46	4	12	24	1	3	2	1
Positive change in tissue appearance	100%	100%	100%	100%	100%	100%	100%	100%
% Area Reduction at 4 weeks	89%	95%	83%	90%	61%	63%	87%	97%
% Area Reduction at 8 weeks	98%	-	98%	86%	80%	97%	92%	100%

POSTER PRESENTATION CASE SERIES SUMMARY

IN INFLAMMATION

MEDIAN WOUND CLOSURE

WITHIN 8 WEEKS

MEDIAN NUMBER OF WEEKS

TO WOUND CLOSURE

MEDIAN APPLICATIONS

TO WOUND CLOSURE

Addressing chronicity and persistent inflammation to accelerate wound healing outcomes

PHOENIX WOUND MATRIX™ is a sophisticated 3D electrospun synthetic polymer matrix designed to provide a microporous scaffold stimulus for tissue regeneration and repair of acute and chronic wounds, and burns.

- Engineered to mimic native ECM morphology
- Fiber diameters and porosity scientifically designed to stimulate pro-regenerative cellular function
- Comprised of bioresorbable synthetic polymers that degrade into α-hydroxy and fatty acids, known to aid in the wound healing process
 - -Lowers pH to support a pro-healing wound environment^{1,2}
 - —Supports lactate-mediated effects known to promote angiogenesis, oxygenation and accelerated wound healing³
- In vitro testing demonstrates a significant increase of cell proliferation with Phoenix Wound Matrix compared to TCP over 24 hours of culture⁴
- Case studies demonstrate consistent healing trajectories through to wound closure
- Easy to apply, non-side specific conformable matrix
- 2-year shelf life
- Offers a first-line, cost-effective synthetic polymer solution to optimize your wound healing outcomes

SIZING AND REIMBURSEMENT

RENOVO DERM

- Nagoba BS, Suryawanshi NM, Wadher B, Selkar S. Acidic Environment and Wound Healing: A Review. Wounds. 2015;27(1):5-11.
- Jones EM, Cochrane CA, Percival SL. The Effect of pH on the Extracellular Matrix and Biofilms. Advances in Wound Care. 2015;4(7):431–439. doi:10.1089/wound.2014.0538.
 Porporato PE, Payen VL, Saedeleer CJD, et al. Lactate stimulates angiogenesis and accelerates the healing of superficial and ischemic wounds in mice. Angiogenesis. 2012;15(4):581–592. doi:10.1007/s10456-012-9282-0.

4. Data on file, DOC-348

**Advanced wound care device, also known as cellular and/or tissue-based product (CTP) or skin substitute.
† All claims supported by human use studies, Good Lab Practice (GLP), porcine animal study and veterinary case studies

